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Axial Vibration Suppression
in a Partial Differential Equation
Model of Ascending Mining
Cable Elevator
Lifting up a cage with miners via a mining cable causes axial vibrations of the cable.
These vibration dynamics can be described by a coupled wave partial differential
equation-ordinary differential equation (PDE-ODE) system with a Neumann intercon-
nection on a time-varying spatial domain. Such a system is actuated not at the moving
cage boundary, but at a separate fixed boundary where a hydraulic actuator acts on a
floating sheave. In this paper, an observer-based output-feedback control law for the sup-
pression of the axial vibration in the varying-length mining cable is designed by the back-
stepping method. The control law is obtained through the estimated distributed vibration
displacements constructed via available boundary measurements. The exponential stabil-
ity of the closed-loop system with the output-feedback control law is shown by Lyapunov
analysis. The performance of the proposed controller is investigated via numerical simu-
lation, which illustrates the effective vibration suppression with the fast convergence of
the observer error. [DOI: 10.1115/1.4040217]

Keywords: wave equation, PDE-ODE, moving boundaries, backstepping, vibration
control

1 Introduction

1.1 Control of Mining Elevators. Compliant varying-length
cable systems are widely applied in numerous industries, such as
elevators and hoisters [1,2]. The cable’s property of “compliance”
or its ability to “stretch” and contract causes mechanical vibra-
tions especially in the ascending process when the vibratory
energy is increasing [3,4], which leads to imprecise positioning
and premature fatigue fracture. For the safe manipulation, vibra-
tion suppression is important to avoid serious hazards. Hence, an
effective and feasible control design for vibration suppression of
the varying-length compliant cable system lifting a cage shown in
Fig. 1 is required, where the vibration dynamics of the cable ele-
vator is modeled as a distributed parameter system [2–5].

1.2 Control of Vibrating String/Cable Systems With Fixed
and Moving Boundaries. The vibrating string is an infinite dimen-
sional system described by a wave partial differential equation
(PDE). Most of the existing studies about vibration control of com-
pliant strings focus on the fixed length. An active boundary control
scheme was proposed in Refs. [6–8] to suppress the vibrations and
regulate the transport velocity of the axially moving string system.
In Refs. [9] and [10], the boundary control based on an integral bar-
rier Lyapunov function was used to suppress the undesirable vibra-
tions of the compliant string system. To guarantee stability under
the uncertainty of the model, a robust adaptive boundary control
was developed in Ref. [11] for a class of compliant string systems
under the unknown spatiotemporally varying distributed disturbance
and the time-dependent boundary disturbance. In Ref. [12], an
adaptive boundary controller was designed to suppress vibrations

and control tension of a flexible marine riser. A cooperative control
law based on the novel integral-barrier Lyapunov function was pro-
posed for a nonuniform fixed-length gantry crane where the uncer-
tain parameters were handled by two adaption laws in Ref. [13]. An
“impedance matching” method [14], where the transfer functions of
distributed parameter systems can be obtained through Laplace
transforms and the pole and zero locations are to be matched by the
control input design, was successfully applied in a fixed domain
wave PDE, which is a linear time-invariant system describing a
vibrating string with a constant length L.

The time-varying length has a significant role on the vibration
dynamic characteristics of compliant string systems [3,15] and
makes the design of the controller more challenging. There are
relatively few studies dealing with vibration control problems of
varying-length cables. The control problems for horizontally and
vertically translating media with the varying length were investi-
gated in Ref. [16]. A boundary control scheme was designed to
suppress the vibrations for a nonlinear varying length drilling riser
system in Ref. [17]. In Ref. [18], a boundary control law was
developed to stabilize the transverse vibrations of a nonlinear ver-
tically moving string system with the varying length. However, in
the literature, the actuators are required to follow the moving
cage, which is difficult to achieve in the practical implementation
due to the inconvenient installation.

From a practical point of view, a control system where control
is applied through the fixed boundary opposite to the instability is
needed in the mining cable elevator. This is a more challenging
task than the classical collocated “boundary damper” feedback
control [19]. In Ref. [19], a control problem for the stabilization
of an one-dimensional hyperbolic equation, which contains the
instability at its free end and the control input on the opposite end,
was dealt with by using the backstepping method [20]. In Ref.
[21], the first global result was proposed for hyperbolic equations
where the actuator is not collocated with the source of the instabil-
ity. In Refs. [22] and [23], adaptive control laws were developed
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for one-dimensional hyperbolic equations, which had an actuator
on one boundary and the unknown anti-damping on the other
boundary. However, the spatial domain of their system is limited
to be constant in time.

1.3 Control of Partial Differential Equation-Ordinary
Differential Equation Systems. The mathematical model of
vibration control for a varying-length string with a moving cage
can be formulated as stabilizing a coupled wave partial differential
equation-ordinary differential equation (PDE-ODE) system on a
time-varying spatial domain with an uncontrolled Neumann type
interface, as shown in this paper. For control design of PDE-ODE
cascades, compensation of actuator dynamics governed by a heat
PDE and a wave PDE was developed by Krstic [24] and [25],
respectively. Designs of the boundary observer and the output feed-
back controller for a class of hyperbolic PDE-ODE cascade systems
were developed in Refs. [26] and [27]. As a more challenging prob-
lem, coupled PDE-ODE systems where the PDE state and the ODE
state act back simultaneously have been studied. In Ref. [28] and
[29], the coupled heat PDE-ODE systems with Dirichlet type
uncontrolled interconnections were stabilized via the backstepping
transformations. By the decomposition of the wave equation into
two transport equations, the stabilization of a nonlinear ODE with
actuator dynamics governed by a wave PDE through the Dirichlet
interconnection on the moving boundary was developed in Refs.
[30] and [31] based on the predictor-based feedback control. How-
ever, the compensation of actuator dynamics of a wave PDE
through the Neumann type interconnection is more challenging. In
Ref. [32], a PDE-ODE cascade system was extended from the
Dirichlet type interconnection to the Neumann type interconnec-
tion. The control designs of coupled heat-ODE and wave-ODE sys-
tems including the Neumann type interconnections were further
developed in Refs. [33] and [34], respectively, which focused on
the fixed domain PDE with the Dirichlet type actuation.

1.4 Results of the Paper

(1) Axial vibration dynamics of a mining cable elevator is
modeled as a PDE system by Hamilton’s principle in
Sec. 2.

(2) A state-feedback controller with explicit gain kernels is
designed to stabilize the coupled wave PDE-ODE system
on a time-varying spatial domain with a Neumann type
interconnection, which is shown in Sec. 3.

(3) A finite-dimensional observer with explicit gain kernels is
also designed to estimate the full distributed states of the
varying-length string only using measurable boundary
states in an anti-collocated setup, which is shown in
Sec. 4.

(4) The exponential stability of the observer-based output-
feedback control system is proved via Lyapunov analysis
in Sec. 5. The result is verified via numerical simulations
in Sec. 6 before the conclusions and future work in
Sec. 7.

1.5 Contributions of the Paper

(1) We extend the result in Sec. 6 of Ref. [32], which stabilized
a cascaded wave PDE-ODE system on a fixed domain via a
full-state feedback controller to the stabilization of a
coupled wave PDE-ODE system on a time-varying spatial
domain via an observer-based output-feedback controller.

(2) Compared with previous contributions for the wave PDE-
ODE system with a Dirichlet type interconnection on a free
boundary studied in Refs. [30] and [31] which exploited the
stabilization via predictor-based design, we deal with a
problem of a wave PDE coupled with an ODE in one
boundary through a Neumann type interaction at the
interface.

(3) This is the first contribution for the observer-based output-
feedback stabilization of the coupled wave PDE-ODE sys-
tem on a time-varying domain with the Neumann type
interconnection.

(4) This is the first control design for the axial vibration sup-
pression of the varying-length string with a payload, where
the actuator acts at the boundary separated from the
payload.

1.6 Notation. Throughout this paper, the partial derivatives
and total derivatives are denoted as

Fig. 1 The mining cable elevator: (a) original model and (b) simplified model
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fx x; tð Þ ¼
@f

@x
x; tð Þ; ft x; tð Þ ¼

@f

@t
x; tð Þ

_f l tð Þ; tð Þ ¼ _l tð Þfx l tð Þ; tð Þ þ ft l tð Þ; tð Þ

b0 xð Þ ¼ db xð Þ
dx

; _X tð Þ ¼ dX tð Þ
dt

2 Problem Formulation

A schematic of a mining cable elevator is depicted in Fig. 1.
Because the catenary cable in Fig. 1(a) is much shorter than the
vertical cable (comparing 70 m with 2000 m), we suppose that the
vibrations on the catenary part are negligible, which gives the sim-
plified model of a varying-length cable with a cage shown in
Fig. 1(b). Due to the help of the lateral guides, the transverse
vibrations in the vertical cable can be neglected since they are
much smaller than the axial vibrations.

Two external forces are actuated. One is the motion control
force Ua(t) driven by a motor and the other is the vibration control
force Uv(t) manipulated by a hydraulic actuator at the floating
sheave. The axial transport motion z*(t) is rigid-body motion
neglecting the compliant property of the cable in the fixed coordi-
nate system O0, and _z�ðtÞ; €z�ðtÞ are the velocity and acceleration
accordingly. The dynamics of axial elastic deformations (vibra-
tion displacements) u(x, t), with ut(x, t) being the vibration veloc-
ity accordingly, are referred to the moving coordinate system O
associated with the motion z*(t). Here, we assume that the motion
state z*(t) is controlled perfectly by the motion control force Ua(t)
and acts as the known target hosting trajectory. Then the axial
vibration dynamics u(x, t) on a prescribed time-varying domain
l(t)¼L – z*(t) is derived by Hamilton’s principle [35] in the
following.

2.1 Modeling of Physical System. The kinetic energy Ek and
the potential energy Ep of the system Fig. 1(b) are represented as

Ek ¼
1

2
q
ðl tð Þ

0

ut x; tð Þ þ _z� tð Þ
� �2

dxþ 1

2
M ut 0; tð Þ þ _z� tð Þ
� �2

þ 1

2

JD

R2
D

_u l tð Þ; tð Þ þ _z� tð Þð Þ2 (1)

Ep ¼
1

2
EA

ðl tð Þ

0

u2
x x; tð Þdxþ

ðl tð Þ

0

T xð Þux x; tð Þdx

þ qg

ðl tð Þ

0

u x; tð Þ þ z� tð Þ
� �

dx

þMg u 0; tð Þ þ z� tð Þ
� �

(2)

where EA¼E�Aa and T(x)¼ (Mþ qx)g is the static tension in
the cable.

The virtual work done by external forces is written as

dW ¼ UvðtÞdðuðlðtÞ; tÞ þ z�ðtÞÞ þ c1 _uð0; tÞduð0; tÞ
þ c2ð _uðlðtÞ; tÞ þ _z�ðtÞÞdðuðlðtÞ; tÞ þ z�ðtÞÞ (3)

Substituting Eqs. (1)–(3) into extended Hamilton’s principle

ðt2

t1

ðdEk � dEp þ dWÞdt ¼ 0 (4)

and apply the variational operation. Note that because the length
of the cable l(t) changes with time, the domain of integration for
the spatial variable is time-dependent. The standard procedure for
integration by parts with respect to the temporal variable does not
apply and some modifications are required. The use of Leibnitz’s
rule gives

ðl tð Þ

0

q ut x; tð Þ þ _z� tð Þ
� �

dutdx

¼ 1

dt

ðl tð Þ

0

q ut x; tð Þ þ _z� tð Þ
� �

dudx

�
ðl tð Þ

0

q utt x; tð Þ þ €z� tð Þ
� �

dudx

� _l tð Þq ut l tð Þ; tð Þ þ _z� tð Þð Þdu l tð Þ; tð Þ (5)

Integrating Eq. (5) from t1 to t2 yields

ðt2

t1

ðlðtÞ

0

qðutðx; tÞ þ _z�ðtÞÞdutdxdt

¼ �
ðt2

t1

ðlðtÞ

0

qðuttðx; tÞ þ €z�ðtÞÞdudxdt

�
ðt2

t1

_lðtÞqðutðlðtÞ; tÞ þ _z�ðtÞÞduðlðtÞ; tÞdt (6)

Applying Eq. (6) and following the standard procedure for inte-
gration by parts with respect to the spatial variable, one obtains
from Eq. (4):

�qðuttðx; tÞ þ €z�ðtÞÞ þ EAuxxðx; tÞ � qgþ TxðxÞ ¼ 0 (7)

�Mðuttð0; tÞ þ €z� ðtÞÞ �Mgþ Tð0ÞþEAuxð0; tÞ þ c1utð0; tÞ ¼ 0

(8)

Uv tð Þ � EAux l tð Þ; tð Þ � T l tð Þð Þ � _l tð Þq ut l tð Þ; tð Þ þ _z� tð Þð Þ

� JD

R2
D

€u l tð Þ; tð Þ þ €z� tð Þð Þ þ c2 _u l tð Þ; tð Þ þ _z� tð Þð Þ ¼ 0 (9)

Considering T(x)¼ (Mþ qx)g, we have the following
relationships:

Tð0Þ ¼ Mg; TxðxÞ ¼ qg (10)

Inserting Eqs. (10), Eqs. (7)–(9) can be written as

�qðuttðx; tÞ þ €z�ðtÞÞ þ EAuxxðx; tÞ ¼ 0 (11)

�Mðuttð0; tÞ þ €z�ðtÞÞ þ EAuxð0; tÞ þ c1utð0; tÞ ¼ 0 (12)

Uv tð Þ � EAux l tð Þ; tð Þ � M þ ql tð Þð Þg� _l tð Þq ut l tð Þ; tð Þ þ _z� tð Þð Þ

� JD

R2
D

€u l tð Þ; tð Þ þ €z� tð Þð Þ þ c2 _u l tð Þ; tð Þ þ _z� tð Þð Þ ¼ 0 (13)

2.2 Simplified Model for Controller Design. In the control-
ler design, we assume the acceleration of the target reference €z�ðtÞ
is zero, which is reasonable because the velocity of the reference
motion z*(t) can be set to be uniform except for starting and stop-
ping moments in the practical operation of the elevator.

Remark 1. Although we derive the control design under the
assumption €z�ðtÞ ¼ 0 in Eqs. (11)–(13), we conduct the simulation
based on both the simplified model and the accurate model with-
out the assumption €z�ðtÞ ¼ 0. The first one is to verify our theoret-
ical result shown later about exponential stability of the output-
feedback closed-loop system. The second one is to show that our
control design is effective on vibration suppression of the mining
cable elevator considered in this paper.

Then, the vibration dynamics Eqs. (11)–(13) can be written as

�quttðx; tÞ þ EAuxxðx; tÞ ¼ 0 (14)

�Muttð0; tÞ þ EAuxð0; tÞ þ c1utð0; tÞ ¼ 0 (15)
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Uv tð Þ � EAux l tð Þ; tð Þ � M þ ql tð Þð Þg� _l tð Þq ut l tð Þ; tð Þ þ _z� tð Þð Þ

� JD

R2
D

€u l tð Þ; tð Þ þ c2 _u l tð Þ; tð Þ þ _z� tð Þð Þ ¼ 0 (16)

Define the vibration control force as

UvðtÞ ¼ Uv1ðtÞ þ Uv2ðtÞ (17)

choosing Uv2(t) as

Uv2 tð Þ ¼ M þ ql tð Þð Þgþ _l tð Þq ut l tð Þ; tð Þ þ _z� tð Þð Þ

þ JD

R2
D

€u l tð Þ; tð Þ � c2 _u l tð Þ; tð Þ þ _z� tð Þð Þ (18)

Therefore, Eqs. (14)–(16) can be obtained as

quttðx; tÞ ¼ EAuxxðx; tÞ; 8ðx; tÞ 2 ½0; lðtÞ� � ½0;1Þ (19)

�Muttð0; tÞ þ EAuxð0; tÞ þ c1utð0; tÞ ¼ 0 (20)

Uv1ðtÞ ¼ EAuxðlðtÞ; tÞ (21)

2.3 Description in Coupled Partial Differential Equation-
Ordinary Differential Equation System. The axial vibration
dynamic system Eqs. (19)–(21) is a wave PDE with boundary con-
ditions (21) and (20) described as a second-order ODE in time,
which makes the problem difficult. To reduce the order of the
boundary conditions, we introduce new variables x1(t) and x2(t)
defined by

x1ðtÞ ¼ uð0; tÞ (22)

x2ðtÞ ¼ utð0; tÞ (23)

as the vibration displacement and the vibration velocity of the
payload. Then, the following relation is obtained:

_x1ðtÞ ¼ x2ðtÞ (24)

_x2 tð Þ ¼ �EA

M
ux 0; tð Þ � c1

M
ut 0; tð Þ (25)

Let XðtÞ 2 R2�1 be a state variable defined by

XðtÞ ¼ ½x1ðtÞ; x2ðtÞ�T (26)

Through the definition Eq. (26), we rewrite Eqs. (19)–(21) as the
following coupled PDE-ODE system:

_XðtÞ ¼ AXðtÞ þ Buxð0; tÞ (27)

uð0; tÞ ¼ CXðtÞ (28)

utt x; tð Þ ¼
EA

q
uxx x; tð Þ (29)

EAuxðlðtÞ; tÞ ¼ Uv1ðtÞ (30)

where

A ¼
0 1

0
�c1

M

2
4

3
5; B ¼ EA

M

0

�1

" #
; C ¼ 1; 0½ � (31)

The Neumann interconnection in ODE Eq. (27) physically
amounts to the force acting on the cage.

Remark 2. The cage-guide boundary is damped when the damp-
ing coefficients c1> 0 in Eq. (8). We process the control design
based on a more general model where c1 is arbitrary. It means the
uncontrolled boundary in the wave equation can be damped
(c1> 0), undamped (c1¼ 0), or even anti-damped (c1< 0).

The more general wave PDE-ODE model is considered in the
control design as

_XðtÞ ¼ AXðtÞ þ Buxð0; tÞ (32)

uttðx; tÞ ¼ quxxðx; tÞ (33)

uð0; tÞ ¼ CXðtÞ (34)

uxðlðtÞ; tÞ ¼ UðtÞ (35)

8ðx; tÞ 2 ½0; lðtÞ� � ½0;1Þ, where q is an arbitrary positive con-
stant. A 2 R2�2; B 2 R2�1; C 2 R1�2 satisfy that the pair [A, B]
is controllable and pair [A, C] is observable and CB¼ 0. XðtÞ 2
R2 is the ODE state and u(x, t) � R is the state of the wave PDE.
UðtÞ ¼ 1=EAUv1ðtÞ is the control input to be designed.

Remark 3. Our control design is also applicable to other physi-
cal problems described by the wave PDE-stable/unstable/antista-
ble ODE coupled model, such as controlling the torsional
vibration dynamics of drill strings with stick-slip instabilities aris-
ing in deep oil drilling [36].

In the control design of this paper, the time-varying spatial domain
l(t) is assumed to have following properties, which are reasonable for
the string’s length of the ascending mining cable elevator:

ASSUMPTION 1. There exists a lower bound l> 0, s.t.
lðtÞ � l; 8t � 0.

ASSUMPTION 2. The domain length l(t) of the wave PDE is
decreasing, i.e., _lðtÞ � 0.

3 State-Feedback Control Design

In this section, we design the state-feedback controller, which
stabilizes the systems (32)–(35) with the full-state measurements
u(x, t) for 8x � [0, l(t)] and X(t). We seek an invertible transfor-
mation that converts the (X, u)-system into the following stable
target system (X, w), described as:

_XðtÞ ¼ ðAþ BKÞXðtÞ þ Bwxð0; tÞ (36)

wttðx; tÞ ¼ qwxxðx; tÞ (37)

wð0; tÞ ¼ 0 (38)

wxðlðtÞ; tÞ ¼ �dwtðlðtÞ; tÞ (39)

where d> 0 is a positive arbitrary damping gain. K is chosen to
make AþBK Hurwitz. Based on Refs. [25] and [37], the back-
stepping transformation is formulated as

wðx; tÞ ¼ uðx; tÞ �
ðx

0

cðx; yÞuðy; tÞdy

�
ðx

0

hðx; yÞutðy; tÞdy� bðxÞXðtÞ (40)

where the kernel functions c(x, y) � R, h(x, y) � R, and bðxÞ 2
R1�2 are to be determined. Taking second derivatives of Eq. (40)
with respect to x and t, respectively, along the solution of Eqs.
(32)–(35), we have
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wtt x; tð Þ � qwxx x; tð Þ

¼ 2q
d

dx
c x; xð Þ

� �
u x; tð Þ

þ q

ðx

0

hxx x; yð Þ � hyy x; yð Þ
� �

ut y; tð Þdy

þ q

ðx

0

cxx x; yð Þ � cyy x; yð Þð Þu y; tð Þdy

þ 2q
d

dx
h x; xð Þ

� �
ut x; tð Þ

� b xð ÞAB� qc x; 0ð Þ þ qhy x; 0ð ÞCB
� �

ux 0; tð Þ
þ qh x; 0ð Þ � b xð ÞB
� �

uxt 0; tð Þ

þ qb00 xð Þ � b xð ÞA2 � qcy x; 0ð ÞC�qhy x; 0ð ÞCA
� �

X tð Þ ¼ 0

(41)

For Eq. (41) to hold, the following conditions must be satisfied:

d

dx
c x; xð Þ ¼ 0 (42)

cxxðx; yÞ ¼ cyyðx; yÞ; (43)

d

dx
h x; xð Þ ¼ 0; (44)

hxxðx; yÞ ¼ hyyðx; yÞ (45)

qhðx; 0Þ ¼ bðxÞB (46)

bðxÞAB ¼ qcðx; 0Þ � qhyðx; 0ÞCB (47)

qb00ðxÞ ¼ bðxÞA2 þ qcyðx; 0ÞCþ qhyðx; 0ÞCA (48)

Substituting the transformation Eq. (40) into Eqs. (36) and (38),
and comparing them with Eqs. (32) and (34), we can chose b(x) to
satisfy

b0ð0Þ ¼ K � cð0; 0ÞC� hð0; 0ÞCA (49)

bð0Þ ¼ C (50)

By conditions Eqs. (42)–(45), c(x, y) and h(x, y) can be written as

cðx; yÞ ¼ mðx� yÞ (51)

hðx; yÞ ¼ nðx� yÞ (52)

Let D 2 R4�4 and K 2 R1�2 be defined as

D ¼
0

1

q
A2

I � 1

q
BCAþ ABCð Þ

2
6664

3
7775 (53)

K ¼ 1

q
CABC (54)

Solving Eqs. (46)–(50) with the help of Eqs. (51) and (52), the
explicit solutions of b(x), c(x, y), and h(x, y) are obtained as

bðxÞ ¼ ½C; K � K �eDx I
0

� 	
(55)

c x; yð Þ ¼
1

q
b x� yð ÞAB (56)

h x; yð Þ ¼
1

q
b x� yð ÞB (57)

where I 2 R2�2 is an identity matrix. For the mining elevator
modeled in Sec. 2, the solutions of gain kernels (55)–(57) are writ-
ten as

b xð Þ ¼ �M

q
k1 � k1 þ

q
M

� �
e

q
Mx; k2 � k2e

q
Mx

� 	
(58)

c x; yð Þ ¼ k1 � k1 þ
q
M

� �
e

q
M x�yð Þ (59)

h x; yð Þ ¼ k2 � k2e
q
M x�yð Þ (60)

where k1> 0, k2> 0 are controller gains such that K¼ [k1, k2]
makes (AþBK) Hurwitz. For the boundary Eq. (39) to hold, the
state-feedback control law is given by

U tð Þ ¼ 1

N1

 
N2ut l tð Þ; tð Þ þ N3u l tð Þ; tð Þ

þ N4ux 0; tð Þ þ N5u 0; tð Þ þ N6X tð Þ

þ
ðl tð Þ

0

N7u x; tð Þdxþ
ðl tð Þ

0

N8ut x; tð Þdx

!
(61)

where

N1 ¼ 1� dKB (62)

N2 ¼ �d (63)

N3ðlðtÞÞ ¼ cðlðtÞ; lðtÞÞ � qhxyðlðtÞ; lðtÞÞ (64)

N4ðlðtÞÞ ¼ dqhxðlðtÞ; 0Þ � dbðlðtÞÞB (65)

N5ðlðtÞÞ ¼ qdhxyðlðtÞ; 0Þ (66)

N6ðlðtÞÞ ¼ bxðlðtÞÞ þ dbðlðtÞÞA (67)

N7ðlðtÞ; xÞ ¼ cxðlðtÞ; xÞ þ qhxyyðlðtÞ; xÞ (68)

N8ðlðtÞ; xÞ ¼ hxðlðtÞ; xÞ þ dcðlðtÞ; xÞ (69)

In the same manner to obtain the direct transformation, we also
obtain the inverse transformation

uðx; tÞ ¼ wðx; tÞ �
ðx

0

uðx; yÞwðy; tÞdy

�
ðx

0

kðx; yÞwtðy; tÞdy� aðxÞXðtÞ (70)

with

aðxÞ ¼ ½�C �K �eZx I
0

� 	
(71)

u x; yð Þ ¼
1

q
a x� yð Þ Aþ BKð ÞB (72)

k x; yð Þ ¼
1

q
a x� yð ÞB (73)
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where

Z ¼ 0 qðAþ BKÞ2
I 0

" #
(74)

The detailed procedure to derive the inverse transformation (70) is
shown in the Appendix.

4 Observer and Output-Feedback Control Design

In Sec. 3, a state-feedback controller is designed to stabilize the
original system exponentially. However, the designed state-
feedback control law requires an infinite number of sensors to
obtain the distributed states in a whole domain, which is not feasi-
ble in practice. In this section, we propose an observer-based out-
put feedback control law, which requires only a few boundary
values as available measurements. An exponentially convergent
observer is designed to reconstruct the distributed states using a
finite number of available boundary measurements in Sec. 4.1 and
the output feedback control law based on the observer is proposed
in Sec. 4.2. Suppose the available measurement of the system is
X(t), which is not collocated with the actuator. In the mining cable
elevator, the acceleration sensor placed at the cage with the inte-
gration algorithm can be used to obtain X(t)¼ [u(0, t), ut(0, t)].
Here, the initial condition of the vibration displacement at the
cage can be obtained by the static equilibrium equation and the
initial velocity is zero.

4.1 Observer Design. The observer structure consists of a
copy of the plant (32)–(35) plus the boundary state error injection,
described as

_̂XðtÞ ¼ AX̂ðtÞ þ Bûxð0; tÞ þ LCðXðtÞ � X̂ðtÞÞ (75)

ûttðx; tÞ ¼ qûxxðx; tÞ � D1ðXðtÞ � X̂ðtÞÞ (76)

ûð0; tÞ ¼ CXðtÞ � D2ðXðtÞ � X̂ðtÞÞ (77)

ûxðlðtÞ; tÞ ¼ UðtÞ (78)

The observer gains D1, D2, and L ¼ ½l1; l2�T are to be determined.
Define the observer errors as

~uðx; tÞ ¼ uðx; tÞ � ûðx; tÞ (79)

~XðtÞ ¼ XðtÞ � X̂ðtÞ (80)

Then, subtracting Eqs. (75)–(78) from Eqs. (32)–(35) provides the
observer error system written as

_~XðtÞ ¼ ðA� LCÞ ~XðtÞ þ B~uxð0; tÞ (81)

~uttðx; tÞ ¼ q~uxxðx; tÞ þ D1
~XðtÞ (82)

~uð0; tÞ ¼ D2
~XðtÞ (83)

~uxðlðtÞ; tÞ ¼ 0 (84)

To convert the systems (81)–(84) into the following exponentially
stable target system described as:

_~XðtÞ ¼ ðA� LCÞ ~XðtÞ þ B ~wxð0; tÞ (85)

~wttðx; tÞ ¼ q ~wxxðx; tÞ (86)

~wð0; tÞ ¼ 0 (87)

~wxðlðtÞ; tÞ ¼ �d ~wtðlðtÞ; tÞ (88)

where L is chosen to make A� LC Hurwitz and d is an arbitrary
positive design parameter, the following direct and inverse trans-
formations are formulated:

~uðx; tÞ ¼ ~wðx; tÞ �
ðx

0

d0ðx; yÞ~wðy; tÞdy

�
ðx

0

d1ðx; yÞ ~wtðy; tÞdy� CðxÞ ~XðtÞ (89)

~wðx; tÞ ¼ ~uðx; tÞ �
ðx

0

d2ðx; yÞ~uðy; tÞdy

�
ðx

0

d3ðx; yÞ~utðy; tÞdy� wðxÞ ~XðtÞ (90)

By matching Eqs. (81)–(84) and Eqs. (85)–(88), the following
conditions are obtained:

CðxÞAB ¼ qd0ðx; 0Þ (91)

qd1ðx; 0Þ ¼ CðxÞB (92)

qC00ðxÞ ¼ CðxÞðA� LCÞ2 þ D1 (93)

D2 ¼ �Cð0Þ (94)

C0ð0Þ ¼ 0 (95)

d1ðlðtÞ; lðtÞÞ ¼ �d (96)

d0ðlðtÞ; lðtÞÞ ¼ 0 (97)

d0xðlðtÞ; yÞ ¼ 0 (98)

d1xðlðtÞ; yÞ ¼ 0 (99)

The solutions of the gain kernels in Eq. (89) are obtained as

CðxÞ ¼ �½0; qd �½AB;B��1
(100)

d0ðx; yÞ ¼ 0 (101)

d1ðx; yÞ ¼ �d (102)

The observer gains are obtained as

D1 ¼ ½0; qd �½AB;B��1ðA� LCÞ2 (103)

D2 ¼ ½0; qd �½AB;B��1
(104)

Here, the matrix [AB, B] is invertible since the pair [A, B] is
controllable.

For the mining elevator modeled in Sec. 2, the solutions of the
gain kernels (100)–(102) are written as

C ¼ c1d

q
;
Md

q

" #
(105)

d0 ¼ 0 (106)

d1 ¼ �d (107)

and then the observer gains Eqs. (103) and (104) are obtained as
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D1 ¼ �
d

q
c1 l

2

1 � l2

� �
þM l1l2 þ

c1l2
M

� �
�c1

c1

M
þ l1

� �"

þM
c2

1

M2
� l2

� �#
(108)

D2 ¼ � c1d

q
;�Md

q

" #
(109)

A� LC can be Hurwitz by choosing positive parameters l1 > 0
and l2 > 0.

4.2 Output-Feedback Control Design. To design the
output-feedback controller, we consider the target ðX̂; ŵÞ-subsys-
tem, which is constructed by the direct and inverse transforma-
tions with the same gain kernels as the state feedback Eqs. (40)
and (70). Hence, we introduce the following transformations from
ðX̂; ûÞ to ðX̂; ŵÞ described as:

ŵðx; tÞ ¼ ûðx; tÞ �
ðx

0

cðx; yÞûðy; tÞdy

�
ðx

0

hðx; yÞûtðy; tÞdy� bðxÞX̂ðtÞ (110)

ûðx; tÞ ¼ ŵðx; tÞ �
ðx

0

uðx; yÞŵðy; tÞdy

�
ðx

0

kðx; yÞŵtðy; tÞdy� aðxÞX̂ðtÞ (111)

Taking time and spatial derivatives of Eq. (110) with the help of
gain kernels (55)–(57) and ðX̂; ûÞ-system (75)–(78), we derive the
following coupled PDE-ODE ðX̂; ŵÞ-system:

_̂XðtÞ ¼ ðAþ BKÞX̂ðtÞ þ Bŵxð0; tÞ
þ ðLCþ Bcð0; 0ÞðC� D2ÞÞ ~XðtÞ (112)

ŵttðx; tÞ ¼ qŵxxðx; tÞ � f1ðxÞ ~XðtÞ � f2ðxÞ ~wxð0; tÞ (113)

ŵð0; tÞ ¼ ðC� D2Þ ~XðtÞ (114)

ŵxðlðtÞ; tÞ ¼ �dŵtðlðtÞ; tÞ (115)

where

f1ðxÞ ¼ bðxÞALCþ bðxÞLCðA� LCÞ

�
ðx

0

hðx; yÞD1ðA� LCÞdy

�
ðx

0

cðx; yÞD1dy (116)

f2ðxÞ ¼ �
ðx

0

hðx; yÞD1Bdyþ bðxÞLCB (117)

By Eq. (115), the output-feedback control law is designed as

U tð Þ ¼ 1

N1

 
N2ût l tð Þ; tð Þ þ N3û l tð Þ; tð Þ

þN4 l tð Þð Þûx 0; tð Þ þ N5 l tð Þð Þû 0; tð Þ

þN6 l tð Þð ÞX̂ tð Þ þ
ðl tð Þ

0

N7 l tð Þ; xð Þû x; tð Þdx

þ
ðl tð Þ

0

N8 l tð Þ; xð Þût x; tð Þdx

!
(118)

Remark 4. If time delay is considered, two ways can be used to
accommodate the delay: one is by incorporating damping into the
model and performing control design for that model, as was done
in Refs. [38] and [39]. Another one is compensating a known time
delay at the input to a wave equation, as described in Ref. [40].

5 Stability Analysis

In this section, we establish the stability proof of the target sys-
tem via Lyapunov analysis of PDEs. The equivalent stability
property between the target system and the original system is
ensured due to the invertibility of the backstepping transforma-
tion. The main theorem of this paper is stated in the following.

THEOREM 1. For any initial estimates ðûðx; 0Þ; X̂ð0ÞÞ compatible
with the control law (118) and initial values (u(x, 0), ut(x, 0)),
which belong to H1(0, L)� L2(0, L), the closed-loop system con-
sisting of the plant (32)–(35) and the observer design (75)–(78)
with the output-feedback control law (118) is exponentially stable
in the sense of the norm

�ðlðtÞ

0

u2
t ðx; tÞdxþ

ðlðtÞ

0

u2
xðx; tÞdxþ

ðlðtÞ

0

û2
t ðx; tÞdx

þ
ðlðtÞ

0

û2
xðx; tÞdxþ jXðtÞj2 þ jX̂ðtÞj2

�1=2

(119)

Proof. First, we show the stability of ð ~X; ~wÞ-subsystem. Define

X1ðtÞ ¼ k~utðtÞk2 þ k~uxðtÞk2 þ j ~XðtÞj2 (120)

N1ðtÞ ¼ k~wtðtÞk2 þ k~wxðtÞk2 þ j ~XðtÞj2 (121)

where k~uðtÞk2
is a compact notation for

Ð lðtÞ
0

~uðx; tÞ2dx. In addi-
tion, we employ a Lyapunov function

V1 ¼ ~X
TðtÞP1

~XðtÞ þ /1E1ðtÞ (122)

where the matrix P1 ¼ PT
1 > 0 is the solution to the Lyapunov

equation

P1ðA� LCÞ þ ðA� LCÞTP1 ¼ �Q1 (123)

for some Q1 ¼ QT
1 > 0. The positive parameter /1 is to be chosen

later. E1(t) is defined as

E1 tð Þ ¼ 1

2
k~wt tð Þk2 þ q

2
k~wx tð Þk2

þ d1

ðl tð Þ

0

1þ xð Þ~wx x; tð Þ ~wt x; tð Þdx (124)

where the parameter d1 should satisfy

0 < d1 <
1

1þ L
min 1; qf g (125)

Then, we get

h11N1ðtÞ � V1ðtÞ � h12N1ðtÞ (126)

where

h11 ¼ min kmin P1ð Þ;
/1

2
1� d1 1þ Lð Þð Þ;



/1

2
q� d1 1þ Lð Þð Þ

�
> 0 (127)
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h12 ¼ max kmax P1ð Þ;
/1

2
1þ d1 1þ Lð Þð Þ;



/1

2
qþ d1 1þ Lð Þð Þ

�
> 0 (128)

Time derivative of V1 along Eqs. (85)–(88) is obtained as

_V1 ¼ � dq/1 ~w2
t l tð Þ; tð Þ � 1

2
j _l tð Þj/1 ~w2

t l tð Þ; tð Þ

� q

2
j _l tð Þj/1 ~w2

x l tð Þ; tð Þ � ~X
T

tð ÞQ1
~X tð Þ

þ 2BP1 ~wx 0; tð Þ ~X tð Þ þ d2

2
1þ l tð Þð Þ/1 ~w2

t l tð Þ; tð Þ

þ qd
2 d1

2
1þ l tð Þð Þ/1 ~w2

t l tð Þ; tð Þ

� q
d1

2
/1 ~w2

x 0; tð Þ � d1

2
/1k~wtk2 � d1

2
q/1k~wxk2

þ j _l tð Þjdd1 1þ l tð Þð Þ/1 ~w2
t l tð Þ; tð Þ (129)

Remark 5. Assumption 2 yields _lðtÞ ¼ �j _lðtÞj.
Applying Young’s inequality to Eq. (129), the following

inequality is obtained:

_V1 � �
1

2
kmin Q1ð Þj ~X tð Þj2 � d1

2
/1k~wtk2 � d1

2
q/1k~wxk2

� dq� d1 1þ Lð Þ
2

1þ qd
2

� �� �
/1 ~w2

t l tð Þ; tð Þ

� j _l tð Þj 1

2
þ d

2
q

2
� dd1 1þ Lð Þ

 !
/1 ~wt l tð Þ; tð Þ2

� q
d1

2
/1 �

2jP1Bj2

kmin Q1ð Þ

 !
~wx 0; tð Þ2 (130)

Therefore, combining with Eq. (125), the parameter d1 and /1 are
chosen to satisfy the following:

0 < d1 <
1

1þ L
min 1; q;

2dq

1þ qd
2
;
1þ qd

2

2d

( )
(131)

/1 >
4jP1Bj2

qd1kmin Q1ð Þ þ - (132)

with a positive parameter -. Then, we arrive at

_V1 � �r1V1 � -~wxð0; tÞ2 � �r1V1 (133)

where

r1 ¼
1

h12

min
d1

2
/1;

d1

2
q/1;

1

2
kmin Q1ð Þ


 �
(134)

Next, we show the stability analysis of the ðX̂; ŵÞ-subsystem.
Define

X2ðtÞ ¼ kûtðtÞk2 þ kûxðtÞk2 þ jX̂ðtÞj2 (135)

N2ðtÞ ¼ kŵtðtÞk2 þ kŵxðtÞk2 þ jX̂ðtÞj2 (136)

Let V2 be a Lyapunov function written as

V2 ¼ X̂
TðtÞP2X̂ðtÞ þ /2E2ðtÞ (137)

where the matrix P2 ¼ PT
2 > 0 is the solution to the following

Lyapunov equation:

P2ðAþ BKÞ þ ðAþ BKÞTP2 ¼ �Q2 (138)

for some Q2 ¼ QT
2 > 0. The positive parameter /2 is to be chosen

later. Define E2(t) as

E2 tð Þ ¼ 1

2
kŵt tð Þk2 þ q

2
kŵx tð Þk2

þ d2

ðl tð Þ

0

1þ xð Þŵx x; tð Þŵt x; tð Þdx (139)

the parameter d2 must be chosen to satisfy

0 < d2 <
1

1þ L
min 1; qf g (140)

Similar with Eqs. (126)–(128), we get

h21N2ðtÞ � V2ðtÞ � h22N2ðtÞ (141)

where

h21¼min kmin P2ð Þ;
/2

2
1�d2 1þLð Þð Þ; /2

2
q�d2 1þLð Þð Þ


 �
> 0

(142)

h22¼max kmax P2ð Þ;
/2

2
1þd2 1þLð Þð Þ; /2

2
qþd2 1þLð Þð Þ


 �
> 0

(143)

Taking the time derivative of V2 along Eqs. (112)–(115), we get

_V2 ¼ /2q

ðl tð Þ

0

ŵt x; tð Þŵxx x; tð Þdx

þ /2q

ðl tð Þ

0

ŵx x; tð Þŵxt x; tð Þdx

� /2

ðl tð Þ

0

ŵt x; tð Þ f1 xð Þ ~X tð Þ þ f2 xð Þ ~wx 0; tð Þ
� 


dx

� /2j _l tð Þj 1
2

ŵ2
t l tð Þ; tð Þ � q/2j _l tð Þj 1

2
ŵ2

x l tð Þ; tð Þ

þ 1

2
/2qd2 1þ l tð Þð Þŵ2

x l tð Þ; tð Þ � 1

2
/2qd2ŵ2

x 0; tð Þ

� 1

2
/2qd2kŵxk2 þ 1

2
/2d2 1þ l tð Þð Þŵ2

t l tð Þ; tð Þ

� 1

2
/2d2ŵ2

t 0; tð Þ � 1

2
/2d2kŵtk2

þ /2
_l tð Þd2 1þ l tð Þð Þŵt l tð Þ; tð Þŵx l tð Þ; tð Þ

þ _̂X
T

tð ÞP2X̂ tð Þ þ X̂
T

tð ÞP2
_̂X tð Þ (144)

Applying Young’s inequality to Eq. (144) as in Eq. (130), the fol-
lowing inequality is obtained:
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_V2 � �
1

2
/2d2 � B1 þ B2ð ÞL

� �
kŵtk2

� 1

2
q/2d2kŵxk2 � 1

2
kmin Q2ð ÞjX̂ tð Þj2

� 1

2
q/2d2 �

1

2
q2 � 4jP2Bj2

kmin Q2ð Þ

 !
ŵ2

x 0; tð Þ

� /2 qd � d2

2
1þ Lð Þ 1þ qd2

� �� �
ŵt l tð Þ; tð Þ2

� /2j _l tð Þj 1

2
þ qd2

2
� dd2 1þ Lð Þ

� �
ŵt l tð Þ; tð Þ2

þ 1

4
/2

2 þ
1

2
/2

2 C� D2ð Þ2 A� LCð Þ2
�

þ 4jP2 LCþ Bc 0; 0ð Þ C� D2ð Þ
� �

j2

kmin Q2ð Þ

!
j ~X tð Þj2

þ 1

4
/2

2 ~w2
x 0; tð Þ (145)

where Bi for i¼ 1, 2 are defined as

Bi ¼ max
x2½0;L�

fjfiðxÞj2g

Therefore, by choosing the parameter d2 and /2 as

0 < d2 <
1

1þ L
min 1; q;

2dq

1þ qd2
;
1þ qd2

2d

( )
(146)

/2 ¼
2

d2

max 2 B1 þ B2ð ÞL; q
2
þ 4jP2Bj2

qkmin Q2ð Þ

( )
(147)

we arrive at

_V2 � �r2V2 þ n1j ~XðtÞj2 þ n2 ~w2
xð0; tÞ (148)

where r2¼ l2/h22> 0, and

l2 ¼ min
1

4
/2d2;

1

2
q/2d2;

1

2
kmin Q2ð Þ


 �
(149)

n1 ¼
1

4
/2

2 þ
1

2
/2

2 C� D2ð Þ2 A� LCð Þ2

þ 4jP2 LCþ Bc 0; 0ð Þ C� D2ð Þ
� �

j2

kmin Q2ð Þ (150)

n2 ¼
1

4
/2

2 (151)

Let V be the Lyapunov function of the overall ð ~X; ~w; X̂; ŵÞ-system
defined as

V ¼ RV1 þ V2 (152)

Taking time derivative of Eq. (152) and using Eqs. (126), (133),
and (148), we get

_V �� Rr1

2
V1 � r2V2 �

Rr1h12

2
� n1

� �
j ~X tð Þj2

� R-� n2ð Þ~wx 0; tð Þ2 (153)

Therefore, choosing R sufficiently large, finally we arrive at

_V � �rV (154)

for some positive r. The differential inequality Eq. (154) deduces
that there exists a positive parameter g1> 0 such that

k~wtk2 þ k~wxk2 þ j ~XðtÞj2 þ kŵtk2 þ kŵxk2 þ jX̂ðtÞj2

� g1ðk~wtð0Þk2 þ k~wxð0Þk2 þ j ~Xð0Þj2

þkŵtð0Þk2 þ kŵxð0Þk2 þ jX̂ð0Þj2Þe�rt (155)

Therefore, the overall target system ð~w; ~X; ŵ; X̂Þ is exponentially
stable. Due to the invertibility of the transformations Eqs. (90)
and (110) as explicitly written in Eqs. (89) and (111), applying
Poincare’s, Young’s, and Cauchy–Schwartz inequalities to Eq.
(155) in a similar manner as Theorem 16.1 in Ref. [37] yields

k~utk2 þ k~uxk2 þ j ~XðtÞj2 þ kûtk2 þ kûxk2 þ jX̂ðtÞj2

� g2ðk~utð0Þk2 þ k~uxð0Þk2 þ j ~Xð0Þj2

þkûtð0Þk2 þ kûxð0Þk2 þ jX̂ð0Þj2Þe�rt (156)

for some positive g2. Therefore, the exponential stability of the
overall original system ð~u; ~X; û; X̂Þ in the sense of Eqs. (120) and
(135) is proved, which concludes Theorem 1 with the help of Eqs.
(79) and (80).

6 Numerical Simulation

The simulation is performed based on the simplified model and
the accurate model. In detail, in the first case, the simplified model
(27)–(30) under the designed state-feedback control law (61) and
the output-feedback control law (118) is conducted to verify the
theoretical result in Theorem 1. In the second case, the accurate
model (11)–(13) with Eq. (18) under the designed output-
feedback control law (118) is used to test the controller perform-
ance on vibration suppression. Note that the control input Uv1

applied in both cases is Uv1¼EAU(t) where U(t) is the designed
control law and the constant EA¼E�Aa.

The physical parameters of the mining cable elevator used in
the simulation are shown in Table 1. To highlight the controller
performance on vibration suppression, we make the damping
coefficient c1 in the elevator be zero. The designed reference of
the hoisting velocity _z�ðtÞ ¼ _lðtÞ is plotted in Fig. 2. The initial
profile of the vibration displacement is obtained by the force bal-
ance equation at the static state, which is written as u(x,
0)¼ –(qxgþMg)/EA. The initial velocity is defined as ut(x, 0)¼ 0
because the initial velocity of the each point in the cable is zero.
The initial conditions u(x, 0) and ut(x, 0) used in the simulation
satisfy the conditions in Theorem 1. The closed-loop responses
with the proposed control law (118) and the proportional–
derivative (PD) control law, which is classically utilized in indus-
tries, are examined to compare their performance to suppress the
axial vibrations of the mining cable. The PD control law is

UpdðtÞ ¼ kpuðlðtÞ; tÞ þ kd _uðlðtÞ; tÞ (157)

where kp and kd are gain parameters. The values of kp and kd are
tuned to attain the efficient control performance. We have tested

Table 1 Physical parameters of the mining cable elevator

Parameters (units) values

Initial length L (m) 2000
Final length (m) 200
Cable effective steel area Aa (m2) 0.47� 10�3

Cable effective Young’s modulus E (N/m2) 1.03� 1010

Cable linear density q (kg/m) 8. 1
Total hoisted mass M (kg) 15,000
Gravitational acceleration g (m/s2) 9.8
Maximum hoisting velocities Vmax (m/s) 15
Total hoisting time tf (s) 150
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different values of kp and kd, and the best regulating performance
is achieved with kp¼ 2000, kd¼ 7000 considering the overshoot
and adjusting time. The gains of the proposed controller d, d and
K¼ [k1, k2] are chosen as d ¼ d ¼ 1 and [k1, k2]¼ [0.0035, 0.03]
in the simulation. The numerical simulation is performed by the
finite difference method for the discretization in time and space
after converting the time-varying domain PDE to the PDE on a
fixed domain [0, 1] but with time-varying coefficients by introduc-
ing ĝ ¼ x=lðtÞ [4]. The time-step and space step are chosen as
0.001 and 0.01, respectively.

6.1 The Vibration Suppression by the Proportional–
Derivative Control and the Proposed Control Law. Figure 3
shows the open-loop responses of the plant (27)–(30). It illustrates
that the large vibration is caused at both the cage and the midpoint
of the string during the total hoisting time. To suppress the vibra-
tion, the closed-loop responses with the PD control law (157) and
the proposed control law are investigated and shown in Fig. 4. It
shows the vibration is suppressed and converges to zero on both
the proposed control law and the PD control. Moreover, it can be
observed that the responses with the proposed control law have
faster convergence and less overshoot than the responses with the

Fig. 3 The open-loop responses of the plant Eqs. (27)–(30).
The large vibration is caused both at the moving cage and at
the midpoint of the cable: (a) the axial vibration at the moving
cage and (b) the axial vibration at the midpoint.

Fig. 4 The closed-loop responses of the plant Eqs. (27)–(30)
with the PD controller (157) (dashed line) and the proposed
state-feedback controller (61). While both controllers achieve
the convergence to zero, the proposed controller achieves
faster convergence with less overshoot: (a) the axial vibration
at the moving cage and (b) the axial vibration at the midpoint of
the cable.

Fig. 2 The hoisting velocity _z �(t)

Fig. 5 The responses of the closed-loop system Eqs. (27)–(30)
and the observer design Eqs. (75)–(78) with the output-
feedback control law (118). The observer achieves convergence
to the actual distributed state, and the associated output-
feedback controller retains similar performance to the state-
feedback: (a) the observer error of the axial vibration at the mid-
point and (b) the axial vibration at the midpoint.
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PD control law. Thus, the proposed control law shows better per-
formance than the classical PD control.

6.2 The Responses With the Observer-Based Output-
Feedback Control Law. With the available boundary measure-
ments of the displacement and the velocity of the axial vibration
at the cage u(0, t) and ut(0, t), the estimated variables of the dis-
tributed states required in the control law are obtained by the pro-
posed observer (75)–(78). The closed-loop responses with an
observer-based output-feedback controller are simulated with the
initial observer error ~uðx; 0Þ ¼ 0:002ðmÞ uniformly. Then the ini-
tial conditions of the observer used in the simulation are ûðx; 0Þ ¼
uðx; 0Þ þ 0:002 and X̂ð0Þ ¼ Xð0Þ þ ½0:002; 0�T, which satisfy the
conditions in Theorem 1. The dynamics of the observer error and
the vibration displacement at the midpoint of the string are shown
in Figs. 5(a) and 5(b), respectively. Because the locations of the
actuator and the sensor are at the opposite boundaries, the stabili-
zation and the estimation of the vibration at the midpoint x¼ l(t)/2
is most challenging due to its accessibility. Figure 5(a) shows the
observer error converges to zero quickly, which implies that the
estimation of the vibration displacements reconstructs their actual
distributed states. Figure 5(b) shows that the convergence to zero
of the vibration state at the midpoint is achieved with the output-

feedback control law as well, although the initial observer error
affects the controller performance in the initial stage compared
with the state-feedback response in Fig. 4.

6.3 The Responses of the Accurate Model. We process the
controller design and stability analysis based on the simplified
model. In this section, we test the performance of our controller
based on the accurate model (11)–(13) with Eq. (18), which
includes the boundary and distributed force disturbances from the
motion acceleration €z�ðtÞ shown in Fig. 6. Applying the proposed
output-feedback controller used in Sec. 6.2 and the PD controller
with the coefficients kp¼ 3500, kd¼ 9000 which are adjusted to
obtain efficient performance, the results under the two controllers
are compared in Fig. 7. We can see that our controller also has the
better performance on vibration suppression than the PD control-
ler even though considering the boundary and distributed force
disturbances from the motion acceleration €z�ðtÞ, which would
introduce saltation at 30 s and 120 s.

7 Conclusion and Future Work

In this paper, we propose an observer-based output-feedback
control design for the axial vibration suppression of a varying-
length mining cable with a cage. The dynamics is represented as a
coupled wave PDE-ODE system with a Neumann type intercon-
nection on a time-varying spatial domain. The proposed control
design is practical for the installation of the actuator and sensor in
the mining cable elevator, in which the actuator is located not at
the moving cage but at the fixed boundary where a hydraulic actu-
ator acts on a floating sheave. Exponential stability of the closed-
loop system with the proposed observer-based output-feedback
control law has been proved by Lyapunov analysis. The simula-
tion results verify the theoretical analysis and illustrate that the
proposed control law can effectively suppress the axial vibrations
of the mining cable elevator. In future work, uncertainties and
unknown parameters in the dynamic model of the mining cable
elevator will be dealt with in the control design.
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Nomenclature

Aa ¼ cross-sectional area of the cable
c1 ¼ cage-guide damping coefficient
c2 ¼ cable-head sheave damping coefficient
E ¼ Young’s modulus of the cable
g ¼ gravitational acceleration

JD ¼ moment of inertia of the drum
l(t) ¼ time-varying length of the cable

L ¼ initial length of the cable
M ¼ mass of the load

RD ¼ radius of the drum
u(x, t) ¼ axial vibration displacement

q ¼ linear density of the cable

Appendix

The inverse transformation is defined as

uðx; tÞ ¼ wðx; tÞ �
ðx

0

uðx; yÞwðy; tÞdy

�
ðx

0

kðx; yÞwtðy; tÞdy� aðxÞXðtÞ (A1)

Fig. 6 The hoisting acceleration

Fig. 7 The closed-loop responses of the accurate plant Eqs.
(11)–(13) with Eq. (18) under the PD controller (157) (dashed
line) and the proposed output-feedback controller (118): (a) the
axial vibration at the moving cage and (b) the axial vibration at
the midpoint of the cable
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where kernel functions u(x, y) � R, k(x, y) � R and aðxÞ 2 R1�2

are to be determined. Taking second derivatives of Eq. (A1) with
respect to x and t respectively, and substituting them into Eq. (33),
we get

uttðx; tÞ � quxxðx; tÞ
¼ 2qðuyðx; xÞ þ uxðx; xÞÞwðx; tÞ

þ q

ðx

0

ðkxxðx; yÞ � kyyðx; yÞÞwtðy; tÞdy

þ q

ðx

0

ðuxxðx; yÞ � uyyðx; yÞÞwðy; tÞdy

þ 2qðkxðx; xÞ þ kyðx; xÞÞwtðx; tÞ
� ðaðxÞ ~AB� quðx; 0ÞÞwxð0; tÞ
þ ðqkðx; 0Þ � aðxÞBÞwxtð0; tÞ

þ ðqa00ðxÞ � aðxÞ ~A2ÞXðtÞ ¼ 0 (A2)

where ~A ¼ Aþ BK. Recall the ODE (32) in the system (32)–(35)

_XðtÞ ¼ AXðtÞ þ Buxð0; tÞ
¼ AXðtÞ þ Bwxð0; tÞ � Ba0ð0ÞXðtÞ
¼ ðAþ BKÞXðtÞ þ Bwxð0; tÞ (A3)

Considering the boundary condition (34), we get

uð0; tÞ ¼ wð0; tÞ � að0ÞXðtÞ ¼ CXðtÞ (A4)

According to Eqs. (A2)–(A4), we get the following conditions on
the kernel functions in the inverse transformation:

uyðx; xÞ þ uxðx; xÞ ¼ 0 (A5)

kyðx; xÞ þ kxðx; xÞ ¼ 0 (A6)

uyyðx; yÞ � uxxðx; yÞ ¼ 0 (A7)

kyyðx; yÞ � kxxðx; yÞ ¼ 0 (A8)

a00ðxÞ � qaðxÞ ~A2 ¼ 0 (A9)

qkðx; 0Þ � aðxÞB ¼ 0 (A10)

quðx; 0Þ � aðxÞ ~AB ¼ 0 (A11)

�a0ð0Þ ¼ K (A12)

�að0Þ ¼ C (A13)

According to Eqs. (A9), (A12), and (A13), the solution of a(x) can
be obtained as

aðxÞ ¼ ½�C �K �eZx I
0

� 	
(A14)

where

Z ¼ 0 q ~A
2

I 0

" #

Considering Eqs. (A10), (A11), and (A14), we can get

u x; yð Þ ¼
1

q
�C; �K
� 


eZ x�yð Þ I
0

� 	
~AB (A15)

k x; yð Þ ¼
1

q
�C; �K
� 


eZ x�yð Þ I
0

� 	
B (A16)
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